
Testing Compilers for Programmable 
Switches Through Switch Hardware 

Simulation

Michael D. Wong, Aatish Kishan Varma, Anirudh Sivaraman



Programmable Switches

Programmable 
Switching ASIC

○ Power

○ Cost

○ Performance

● Switch programmability



Programming Languages



Building Switch Compilers

● Compiler development in general is hard

○ Need knowledge of underlying hardware architecture
○ Requires significant engineering effort

● Switch compiler development introduces new challenges



Switch Compilation 
Challenges

● Limited hardware resources
○ Limited pipeline stages, memory, ALUs, etc.

● Pipeline architecture
○ Computations must be mapped to pipeline stages that respect 

dependencies

● All-or-nothing nature
○ A program runs at line-rate if it can be mapped to the pipeline or it 

is rejected



Druzhba

● Low-level switch pipeline simulator

● Executes compiler-generated machine code programs

● Compiler developers observe the correctness of compiler mappings



Druzhba Machine Model
● Druzhba models the hardware details of the pipeline architecture

○ Details of arithmetic logic units (ALUs)
○ Packet header vectors (PHVs) instead of packets
○ Input and output multiplexers

Packet header 
vector (PHV)

Arithmetic logic 
unit (ALU)

Match/action
processing

Muxes



Druzhba Machine Model



Druzhba Machine Model



Druzhba Machine Model



Druzhba Machine Model



Druzhba Machine Model



Druzhba Machine Model



Druzhba Machine Model



Druzhba Machine Model



Druzhba Machine Model

Limitations: does not model matching, parsing, and scheduling



Druzhba Overview
● dgen pipeline generator

○ Generates simulation program to represent hardware details of 
the pipeline

● dsim pipeline simulator
○ Executes a machine code program using dgen’s generated pipeline



Hardware Specification

● dgen uses the hardware specification to generate a file with the 
pipeline configuration details

dgen
Pipeline 

description

2 x 2

ALU specification

Pipeline depth x width

● Optimizations applied to the pipeline description to reduce 
overall simulation time



Hardware Simulation

● dsim simulates the hardware design specified in the pipeline description

● dsim takes in as input the machine code from the compiler

○ The machine code configures the behavior for ALUs and muxes

● A compiler is tested by fuzzing a compiler-generated program with 
random PHVs



Hardware Simulation

Machine code

Input PHV Output PHV



Compiler Testing Workflow
1. Provide transactional specification that captures intended behavior

2. Fuzz both the dsim pipeline and the transactional specification

3. Check that the dsim pipeline and the transactional specification produce 
the same behavior



Correctness
● Correct compiler mapping

○ The output PHVs from both the dsim pipeline and the 
transactional specification are equal

● Erroneous compiler mapping
○ An input PHV yields two different results from the dsim 

pipeline and transactional specification



Compiler Testing Example

dsim

Transactiona
l spec

Traffic 
generator Input PHV



Compiler Testing Example

PHV

PHV

Equal?

PHV

PHV

Equal

PHV

PHV

Equal

PHV

PHV

Equal

PHV

PHV

Equal

Traffic 
generator Input PHV

dsim

Transactiona
l spec



Correct

Compiler Testing Example

PHV

PHV

Equal

PHV

PHV

Equal

PHV

PHV

Equal

PHV

PHV

Equal

PHV

PHV

Equal

Traffic 
generator Input PHV

dsim

Transactiona
l spec



Compiler Testing Example

PHV

PHV

Equal?

PHV

PHV

Equal

PHV

PHV

Equal

PHV

PHV

Equal

Traffic 
generator Input PHV

dsim

Transactiona
l spec



Compiler Testing Example

Compilation 
error

PHV

PHV

NOT Equal

PHV

PHV

Equal

PHV

PHV

Equal

PHV

PHV

Equal

Traffic 
generator Input PHV

dsim

Transactiona
l spec



Testing Chipmunk

● Druzhba tested Chipmunk, a compiler for the Domino programming 
language

● The compilations of 120+ Chipmunk programs were validated



Conclusion

● We can model the low-level hardware details of the switch chip

● Druzhba can simulate compiler-generated machine code programs

● Compiler developers observe correctness of compiler mappings

● Code: https://github.com/chipmunk-project/druzhba-simulator



back up slides



False Positives



No

Yes

Compiler

Does the 
program fit ?

Program 1

Program 2

False Positives



Compiler

Does the 
program fit ?

Execute on 
switch

No

Yes
Program 1

Program 2

False Positives



Execute on 
switch

No

Rejected

Yes

Compiler

Does the 
program fit ?

Program 1

Program 2

False Positives



Switch Architecture



Compilation to pipeline

Switch ASIC

Parser Matches/actions Queues ...



Hardware Specification
● Pipeline dimensions (depth, width)

○ Number of total stages and number of ALUs per stage

● ALU specifications
○ ALU DSL used to specify capabilities of switch ALUs

2 x 2

ALU specificationPipeline depth x width



Optimizations

● Sparse conditional constant propagation
○ Constant propagation of machine code values followed by 

interpretation of control flow

● Function inlining
○ Replace pipeline description 



Compiler Testing Workflow

Compiler Machine 
code

Program dsim

dgen

Pipeline 
desc.

Hardware 
spec


