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ABSTRACT
Malware continues to plague large organizations and is becoming
increasingly difficult to detect as malware authors are constantly
looking for new ways to obfuscate and diversify their malicious
code. While neural networks for malware detection have shown
significant improvements over traditional signature-based detec-
tors, security researchers and practitioners often struggle to obtain
sufficiently large and comprehensive datasets for training these
models.This is especially challenging for institutions like banks and
governments that receive targeted malware, and can thus can not
collect large scale malware. Diverse benign applications are also
uniquely challenging due to copyright and licensing restrictions.
We present Marvolo, a binary mutator that programmatically
grows malware (and benign) datasets in a manner that boosts the
accuracy of ML-driven malware detection. To do this, Marvolo
employs semantics-preserving code transformations that mimic the
alterations that malware authors and defensive benign developers
routinely make in practice to sidestep advances in detectors or pro-
tect considered “trade secret” code. Crucially, semantics-preserving
transformations also enable Marvolo to safely propagate labels
from original to newly-generated data samples without mandat-
ing expensive reverse engineering of binaries. Experiments using
recent ML-driven malware detector show that Marvolo boosts
accuracies by up to 5% and AUC up to 10%.
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1 INTRODUCTION
Cybersecurity is more important than ever as malware authors
continue to devise not only new sophisticated attack methods, but
also obfuscations to hide their malicious code. Indeed, malware
now causes billions of dollars in damages every year [6]. Detecting
malware is notoriously difficult – e.g., in 2020, it took 280 days on
average to identify and contain a data breach [2] – and many of the
affected systems are crucial to the operation of hospitals, schools,
governments, universities, and other critical infrastructure [3].

Many approaches have been developed to aid practitioners in dis-
tinguishing malicious files (i.e., malware) from benign ones, which
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we will review further in §2. Early solutions centered on employ-
ing static or dynamic analyses of binaries to identify indicators of
malicious behavior, e.g., stealing user credentials [33]. However,
each faces significant drawbacks: static analysis relies on manually-
specified signatures that struggle to generalize to newer malware
variants, while dynamic analyses bring high computational costs
and virtual environments that are detectable by malicious programs
(which can then fly under the radar) [27]. More recently, a slew of
data-driven strategies have been developed to sidestep the above
issues by training ML models to distinguish between benign and
malicious executables [1, 12, 21, 22, 25, 27].

Despite their promise, ML-based solutions face a significant prac-
tical challenge: obtaining representative and labeled training data
is infeasible for many organizations. On the one hand, commercial
datasets with these properties exist, but are unattainable for many
due to financial constraints [12, 18], with the licensing needed can
cost $400k/year. On the other hand, home-grown datasets face scal-
ing and labeling challenges, e.g., benign samples are often closed-
source or copyright-protected, and labeling involves error-prone
manual analysis to reverse engineer each binary. Consequently,
many security practitioners and researchers only have access to
small datasets that lack the heterogeneity seen in the wild. For ex-
ample, we find that recent ML detectors achieve accuracies of only
60-71% when trained on small public datasets [15, 31] versus their
large, commercial counterparts; such degradations are unaccept-
able given that single-digit accuracy improvements (and any new
detected malware) are celebrated by malware analysts [7]. We note
that these small datasets are also realistic in representing the chal-
lenge applying ML to targeted or otherwise unique malware fami-
lies of interst (e.g., targeted banking malware) rather than broad
and indiscriminate malware.

We presentMarvolo, a binary mutator that programmatically
grows (accessible) malware datasets in amanner that directly boosts
the accuracy of ML-driven malware detectors. The driving insight
behind Marvolo’s data augmentation strategy is drawn from our
analysis of binaries in high-accuracy (but difficult to access) mal-
ware datasets (§3). In particular, we observe that these datasets
routinely contain multiple versions of a given malware file that
differ based on the effects of semantics-preserving code transfor-
mations, i.e., alterations to the code that change aesthetics, but not
externalized behavior [39]. The reason is intuitive: producing mal-
ware requires significant effort, and once a malware binary becomes
detectable, code transformations are a quick way for malware au-
thors to preserve malicious behavior while sidestepping discernible
patterns.

Building on the above observation,Marvolo performs a wide
range of semantics-preserving code transformations on existing bi-
naries in an input dataset. Crucially, this approach naturally results
in automatic (accurate) labeling of the augmented data samples.
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The reason is that semantics-preserving transformations inherently
preserve overall code behavior. Thus, labels of pre-transformed
binaries can be safely carried over to the transformed versions.

We evaluated Marvolo using the recent MalConv2 [29] mal-
ware detector and multiple commercially-available large/small-
scale datasets, i.e., the large-scale Ember [12] dataset, as well as the
small-scale Brazilian and Microsoft datasets [15, 31]. Overall, we
find thatMarvolo boosts MalConv2’s accuracies by up to 5%, with
most wins coming from accurately detecting previously unseen
binary families – such scenarios are intuitively more difficult to
catch, but are the primary goal of any malware detection system,
highlighting the practical utility of Marvolo.

2 BACKGROUND AND RELATEDWORK
Though prior attempts have been made in data augmentation for
malware detection, they do not do so in a meaningful way. In
[19, 24], programs are represented as sequences of opcodes and
augmentation involves replacing one opcode with another without
preserving semantics. Further, [17] augments images generated
from malware, which are known to be flawed representation [25].
In contrast, Marvolo’s contributions lie in (1) a deep-dive analysis
of large-scale malware datasets to uncover the usage patterns of
semantics-preserving code transformations by malware authors,
and (2) a system that leverages those insights to efficiently grow
small datasets into larger ones with improved heterogeneity and
realism that aid end-to-end ML-based malware detection.

Malware detection involves both static and dynamic analysis
techniques [27]. Static analysis approaches primarily involved us-
ing a tool such as Yara [9] to generate specific rules or patterns
for identifying malicious files. However, static signatures fail to
keep pace with the rapidly evolving space of deployed malware
variants [7] and can take days of manual effort [28, 34]. Malware
detectors rooted in dynamic analysis [30] execute a binary in a
sandbox to observe its behavior while restricting potential damage.
However, this can be computationally expensive because each file
often must be executed multiple times to elicit harmful behavior.
Worse, some malicious binaries embed checks to detect whether
they are running a virtual (sandbox) environment based on VM
properties dynamically alter their behavior to evade detection [27].

2.1 The Problem: Limited (Realistic) Data
To address the above limitations and deliver detection accuracy
(and generalization), data-driven techniques using deep learning
models have seen significant traction in recent years. However,
these malware detectors heavily rely on the data used to train
the corresponding neural networks. Unfortunately, to date, it is
difficult for practitioners to obtain access to training datasets that
are sufficiently representative of malware in the wild.

Commercial datasets that contain massive amounts of labeled
data samples for malware detection do exist. For instance, the pop-
ular Ember dataset [12] contains 1.1 million samples and close to
3,000 distinct malware families. However, obtaining the raw exe-
cutables in the Ember dataset mandates having a VirusTotal license,
which can cost upwards of $400,000 per year!1 Consequently, many

1Ember’s free offering omits executables, and only presents a limited number of
features per binary, e.g., size, library functions. These features are insufficient for most

(a) Accuracy results. (b) AUC results.

Figure 1: Performance of MalConv2 [29] when training on
different subsets of the Ember dataset [12]

cost-constrained practitioners and research groups must resort to
far smaller datasets that are publicly available, e.g., the Brazilian
malware dataset contains 50K files [15], while the Microsoft mal-
ware dataset contains 20K files with only 9 malware families [31].

On the other hand, practitioners can generate homegrown datasets
using honeypots that attract malware binaries [13]. However, such
approaches face three challenges. First, the type of malware that
is gathered is dependent on the collection methodology set by
the user, leading to biased datasets [27]. Second, collecting benign
data samples is difficult since software is often closed-source and
copyright-protected, resulting in datasets with a few thousand be-
nign samples [1, 21]. More recent works often rely on partnerships
with anti-virus companies in order to obtain sufficient benign sam-
ples [14, 16, 26, 32, 37, 38]. This naturally results in unsharable data,
causing reproducibility challenges [27], slows research by non-
connected groups, and neglects the needs of niche and targeted
malware[15, 28]. Finally, even if practitioners were to obtain a large
number of samples, labeling them is not straightforward. Software
reverse-engineering tools exist [5], but can consume many hours to
reverse engineer a single executable, even for experts [10, 27, 35].

To demonstrate the sensitivity of ML-based malware detectors
to dataset composition and size, we ran experiments comparing the
efficacy of models trained with commercial large-scale (Ember) and
small-scale datasets. Results use the recent MalConv2 detector [29],
and follow the setup described in §5 (testing is done on the 200K
Ember test set). To contextualize these results, we note that the
implications of detecting even a single additional malicious binary
in the wild can be substantial (§1), and that single-digit accuracy
improvements are celebrated by malware analysts [7].
Takeaway 1: small malware datasets lack heterogeneity, fail to
generalize. Across the considered free, small datasets that are sized
between 20-75k samples, MalConv2’s accuracy spanned only 60-
71% relative to a training on the full Ember training dataset (600k).
Takeaway 2: large (proven) malware datasets have important di-
versity that detectors capitalize on. Figures 1a and 1b show the
diminishing accuracy and AUC respectively of MalConv2 when
trained on progressively fewer data samples from the Ember dataset.
In these results, samples chosen at random were removed to cre-
ate progressively shrink the dataset. As shown, accuracy starts at
91% but dips below 80% when trained on subsets sized similarly

existing data-driven malware detectors, and cannot support long term development:
analysts must avoid having adversaries learn about the used features, and cannot test
new features without access to the binaries.
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Zenpak
inc eax
inc ecx
inc edx
inc ebx
inc esp
inc ebp
inc esi
inc edi

dec eax
dec ecx
dec edx
dec ebx
dec esp
dec ebp
dec esi
dec edi

Sivis
nop
nop
nop
xor eax, eax
inc ebx
dec ebx
inc ecx
dec ecx

inc eax
push edx
xor edx, edx
pop edx
inc eax
dec eax
cmp 0x17b8ef93, eax
jne 0x407033

Figure 2: Code snippets from two malware families in the
Ember dataset that exhibit semantics-preserving code trans-
formations.

to existing free datasets, e.g., 75k samples and less. Similarly AUC
starts at 97% but dips below 86%. These results indicate the data-
hungry nature of ML-based malware detectors, and highlight the
heterogeneity in data samples in large datasets.

3 APPROACH
Our results from Section 2 highlight the inadequacies of small
malware datasets relative to the large (commercial) datasets that
have supported high accuracies for ML-driven malware detectors in
practical settings. However, given the superior attainability of small
datasets, our main goal is to determine whether they can be altered
to more closely mimic the properties of their larger counterparts
and deliver similar efficacy when used to train malware detectors.
To do so, we programmatically analyzed the binaries in the large
Ember dataset to identify their defining characteristics. We start
with representative case studies that illustrate our findings, before
describing more general takeaways.

Binary 1
push ebx
push esi
mov esi,DWORD PTR [ebp+0x8]
push edi
mov eax,ds:0x470208
push 0x7
pop ecx
lea edi,DWORD PTR [ebp-0x2c]

Binary 2
mov eax,ds:0x423e88
push ebx
push esi
mov esi,DWORD PTR [ebp+0x8]
push edi
push 0x7
pop ecx
lea edi,DWORD PTR [ebp-0x28]

Figure 3: Snippets from two binaries in the same “Install-
Monster” family that exhibit minor differences due to code
obfuscations.

Case Studies. Figure 2 shows code snippets from two different mal-
ware families in the Ember dataset: the Zenpak malware family,
and the Sivis malware family. These snippets exhibit instructions
that alter the state of the program and later reverse those modifica-
tions. Figure 3 depicts snippets from two binaries from the Ember
dataset that belong to the same family but have minor differences
from obfuscations.
Case study I. Figure 2 shows code snippets from two different
malware families in the Ember dataset: the Zenpak malware family,
and the Sivis malware family.2 The first binary from Zenpak uses a
code obfuscation technique called junk code insertion [39]. Junk
code is comprised of instructions that are executed but do not affect
the externalized output(s) of the program. Here, junk codemanifests
as a series of inc instructions (line 1-8) that each increment a
2x86 assembly code samples are written in Intel syntax.
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Figure 4: Percentages of code blocks in Ember’s binaries that
are affected by different code transformations.

register’s value, immediately followed by dec instructions (lines
9-16) that decrement them.

The binary from Sivis also uses multiple forms of junk code in-
sertion: (1) the nop instructions (lines 1-3) which do not trigger
any computation or data movement, (2) the interleaved inc and
dec that sequentially alter the same registers (lines 5-8, 13-14), and
(3) lines 10-12 which push the value of edx onto the stack, set the
value of edx to 0 using xor, and then pop the old value of edx from
the stack and store it back into edx (rendering the xor operation
useless). The Sivis binary embeds another code obfuscation tech-
nique called opaque predicates [39], which are (typically) known
a priori by a programmer to always evaluate to true or false. This
manifests in relation to eax. At the start of the snippet, eax is defini-
tively set to 0 after the xor instruction (line 4). However, at the
point of the cmp instruction in line 15, the value stored in eax is
definitively 1 due to the series of inc and dec operations in the
preceding statements. In line 15, since eax ≠ 0x17b8ef93, the jump
in the following jne instruction is always taken.
Case study II. Figure 3 depicts snippets from two sample binaries
from the Ember dataset that belong to the same family. Unsurpris-
ingly, the two code snippets are similar at first glance. However,
there exist minor differences due to two code obfuscation tech-
niques that they embed. First, each binary uses a mov instruction to
write data from the data segment into eax. However, the data is lo-
cated in different memory locations across the two version; the two
binaries retrieve the value from ds:0x470208 and ds:0x324e88,
respectively. This pattern is also seen in the lea instructions where
the two binaries use different offsets from the stack base pointer,
ebp, to retrieve their values. In addition, the two binaries use in-
struction swapping to reorder instructions (in this case, the mov
instruction) in a manner that preserves overall semantics.

Our case studies highlight two main points (which we repeatedly
observed across the Ember dataset):

(1)Semantics-preserving code transformations.Malware authors
routinely alter their malicious programs using code obfuscation
techniques that preserve program behavior. The reason is intuitive:
as malware detectors discern already-deployed malware by recog-
nizing patterns in their code composition or execution regimes (§2),
a far less challenging way for malware authors to continue deploy-
ing their malicious code is to perform semantics-preserving code
transformations to preserve its malicious behavior while deviating
from the patterns used in existing malware detectors.

(2) Combinations of transformations. Performing code transfor-
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Figure 5: Pairwise byte diff results between binaries in five
representative malware families.

mations is fruitful as such transformations are often (logically) com-
plementary, and the effect of each transformation depends on inter-
actions between the transformation logic and binary code (ranges
shown in Figure 4). Additionally, we find that, to further boost
diversity with multiple transformations, each obfuscation is not
necessarily applied to all possible blocks in a binary, i.e., some bina-
ries exhibited the effects of an obfuscation in all code blocks, while
others demonstrated the effects in only a fraction of those blocks.

Taking a step back, these observations lead to two implications
about the large datasets that have been successfully used for ML-
driven malware detection. First, there exist far fewer families of
malicious binaries than malicious binaries themselves; the Ember
dataset includes 300K malicious binary samples spread across only
332 families. Second, the binaries within each family can differ quite
substantially depending on the specific transformations that are
applied across versions. Figure 5 highlights this property, showing
that for subsets of five representative families, the constituent bina-
ries exhibit median pairwise percent differences of 38-99% (which
equates to raw differences of 0.8–5.4 MB).
Our approach. The results above motivate a new approach to bol-
stering the efficacy of small malware datasets: data augmentation
via semantics-preserving transformations. In other words, we aim
to grow small datasets by performing different combinations of
semantics-preserving code transformations on varying numbers of
blocks in the constituent binaries. Doing so mimics the techniques
that malware authors use to sidestep malware detectors over time
[7], and yield data similar to that in (proven) large datasets. We
employ further code transformations done by optimizing compil-
ers to generate new benign binaries. Perhaps more importantly,
semantics-preserving transformations provide a direct path to ac-
curately labeling newly generated data without manual effort since
pre- and post-transformation binaries will exhibit the same behav-
ior (and thus can safely share labels). §4 describes how our system,
Marvolo, practically realizes this approach.

4 MARVOLO
To operate on (i.e., mutate) instruction blocks,Marvolo first dis-
assembles each block. The resulting blocks are then passed into
theMarvolo code transformation engine, which (1) selects a set
of semantics-preserving code transformations to apply to the bi-
nary during a given iteration, (2) analyzes all blocks to determine
which blocks each considered transformation is applicable to, (3)
selects the fraction of potential blocks to apply each transformation
to, and (4) sequentially carries out the transformations on the se-
lected blocks. After code transformations are complete for a given
iteration, Marvolo then directly swaps out the corresponding (un-
modified) blocks with their transformed counterparts and invokes
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Figure 6: Results ofMarvolo augmented training when test-
ing on in-distribution data from Ember (a), novel malware
families not seen in training (b).

an assembler to get the output binary. This binary is then added to
the original dataset and tagged with the same label (i.e., malicious
or benign) as the one used during its generation.

Marvolo currently supports 10 different semantics-preserving
code transformations that cover the set of mutations we observed in
our analysis of the popular Ember dataset (§3), as well as commonly
used code obfuscations [8, 20, 39] and transformation techniques
employed by off-the-shelf optimizing compilers [4, 11]. Supported
transformations include junk code insertion and instruction swap-
ping (both described in §3), as well as instruction substitution which
replaces an instruction with a (more complex) sequence of instruc-
tions that is semantically equivalent. To ensure that a modified
code block is semantically equivalent to the original block, static
analysis is performed after the code transformation is applied. This
analysis tracks program reads and writes and determines whether
the reads from the registers and memory locations in that basic
block would still return the same values after the modification. If a
violation occurs from the code transformation, it is reverted and a
new transformation is attempted. Appendix A provides a compre-
hensive overview of the transformations thatMarvolo supports,
as well as the logistics to carrying out each one.
Limitations. Despite the promise of Marvolo, there are several
limitations. First, new code alterations used by malware authors are
only caught once detectors are presented with data samples or sig-
natures that identify them.Marvolo does not address this problem,
and instead aims to maximize the utility of the data samples that
practitioners have access to at any time. Second, non-trivial engi-
neering is required for extensions to new platforms (e.g., Android).

5 EVALUATION
To evaluateMarvolo, we used the recent MalConv2 CNN-powered
malware detector [29]. For context, MalConv2’s model spans 5 lay-
ers, with an embedding layer that maps bytes to vectors, and then
a series of convolutional and recurrent layers. Our experiments
consider 2 main datasets: (1) the high-accuracy commercial Em-
ber dataset that includes 1.1M samples (800K after removing ill-
formed binaries), and (2) the small-scale (free) Brazilian malware
dataset [15] with 50K samples. Given the realism of Ember observed
by researchers and practitioners, we use its test set, which consists
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of 200K benign and malicious samples, directly to reflect malware
detection scenarios in the wild. For training, we consider a subset
of the 600K-sample Ember training dataset, as well as the full Brazil-
ian dataset; we train a separate MalConv2 model for each case. Our
subsets consist of 10-30K samples with malicious samples coming
from only several different malware families, which is consistent
with the dataset size and composition that many malware research
groups currently work with [23]. While the Ember training subset
and test set contain binaries of the same family, we also perform
experiments with a smaller test set that only consists of malware
families that were not present in the training set to evaluate how
well Marvolo gets MalConv2 to generalize. While we would have
preferred to experiment with augmenting more datasets, we are
constrained since many existing datasets do not contain raw bina-
ries as mentioned in 2.

For each dataset, we train MalConv2 to convergence, routinely
around 5 epochs. Training involves first collecting (converged)
“pre-trained” weights on the original training dataset, and then
running an additional training round (5 epochs) with the augmented
dataset thatMarvolo generates. Unless otherwise noted,Marvolo
employs combinations of all 10 of its supported transformations and
generates a set of mutated binaries (split evenly across malicious
and benign files); the description of each experiment specifies the
number of those mutated samples considered during retraining.
Accuracy is reported as the percentage of correct labels (i.e., benign
or malicious) output by MalConv2.

We also measure AUC, which is an especially important metric
for malware analysts because of the need to characterize and rank
binaries by their perceived maliciousness [10, 25]. Malware that
is perceived to be more dangerous than others are then quickly
identified and quarantined. Thus, A high AUC is crucial since it
corresponds to a successful ranking of most malicious files above
benign files. We run each experiment four times and report on the
distributions.

5.1 Overall Accuracy Improvements
Figure 6a shows the accuracy improvements that Marvolo brings
to MalConv2 when augmenting the Ember training dataset with
different numbers of mutated samples (ranging from 3-12K). Accu-
racy improvements range from 1–5% atop the baseline accuracy of
61.3% achieved when considering the unmodified Ember dataset
alone. Perhaps more importantly, these results highlight that ac-
curacy improvements typically come quickly, while operating on
only a small number of binaries, e.g., adding only 3K and 6K mu-
tated samples to the dataset delivers 3.5% and 5% of accuracy boosts,
respectively. Additionally, we find that our augmented datasets de-
liver AUC improvements of 5% – 10%. The reason is thatMarvolo’s
efficiency-centric optimizations promote rapid diversity amongst
the generated samples, which in turn enable MalConv2 to quickly
strike a desirable balance between (1) learning to detect obfusca-
tion patterns, while (2) not overfitting to mutated samples. Results
on the smaller Brazilian malware dataset [15] were comparable:
adding 2K mutated files delivered median accuracy improvements
of 2% (atop the 61% withoutMarvolo).

Further analysis reveals that a key driver of the overall accuracy
and AUC wins delivered by Marvolo are improvements on test

samples from previously unseen malware families, i.e., families that
did not appear in the training dataset. Recall from §2 that such
samples are the ones which static analysis and small-scale ML
approaches typically struggle to generalize to. Figure 6b illustrates
this, showing that Marvolo’s accuracy boosts on only the subset
of test binaries that were not seen during training are on par with
the wins on the complete test set (1–5%). Marvolo also improves
AUC on unseen malware families by 5–10%. The underlying reason
for these improvements is that code transformations provide a
discernible pattern for MalConv2 to link across diverse binaries
in different families. In light of these results, we provide further
analysis ofMarvolo in Appendix B.

6 CONCLUSION
Marvolo is a data augmentation engine that leverages insights
from a deep-dive analysis of existing malware datasets to apply
meaningful data augmentation to the domain of malware detection.
Key to Marvolo’s practicality is its ability to (safely) propagate
labels across input and output binary samples. Experiments using
commercial malware datasets and a recent ML-driven malware
detector show that Marvolo boosts accuracies by up to 5% and
AUC by up to 10%.
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A MARVOLO’S CODE TRANSFORMATIONS
Junk code insertion. Insert instructions into the binary that don’t
alter the output of the program upon being executed. These instruc-
tions may change the state of the program (e.g., register values
and memory) but reverse the changes before progressing to subse-
quent instructions. The simplest form of this transformation that
we implement is the insertion of nop instructions. We also generate
semantic nops which consist of pushing values onto the stack, per-
forming arithmetic and logical operations, and then popping the
values off once they’re completed. We augment this with additional
instructions that also read and write to memory. In the following
semantic nop

push eax
inc eax
or eax, 0x1c
add eax, dword ptr [esp - 0x34]
not eax
pop eax

the eax register is first pushed to the stack. Then arithmetic and
bitwise operations are performed on eax. Lastly, the old value of
eax is popped from the stack and written back into eax; since the
value of eax is not written elsewhere prior to pop eax, the compu-
tations are effectively useless.
Register reassignment. Changes the names of the variables or reg-
isters. Identify a live register, rX, within a basic block and replace it
with a new register, rY, that is unused within the block. The value of
rY is first pushed onto the stack and is then written with the value
stored in rX. After computations are performed on rY, it is written
to rX and the original value of rY is popped and written back to rY.
Function inlining. Identify functions and every time they are in-
voked, replace the call instructions with the bodies of the identi-
fied functions. In our implementation, we solely focus on functions
with straight-line code. Function inlining is a common compiler op-
timization used to reduce the overhead of invoking a function and
to make basic blocks more amenable to subsequent optimizations.
Function outlining. Identify straight-line instructions within the
current basic block and generate a new function with those instruc-
tions. Replace the original instructions with a call instruction to
the newly-generated function. This is a compiler optimization for
reducing code size.
Obfuscating Instruction substitution. Replace an instruction with
a semantically equivalent sequence of new instructions. We cur-
rently support over 30 substitutions. We add simple substitutions
such as changing add rX, 1 to sub rX, -1. We adopt further
instruction substitutions, including many implemented in LLVM
Obfuscator [20]. These substitutions are mostly comprised of more
complex bitwise and arithmetic instructions. For instance, Mar-
volo would replace the instruction or eax,0x4711 with

push esi
push edi
mov esi, eax
mov edi, 0x4711
and eax, edi
xor esi, edi
or eax, esi
pop edi
pop esi

The transformation is effectively replacing 𝑎 = 𝑏 |𝑐 with 𝑎 = (𝑏 &
𝑐) | (𝑏ˆ𝑐).

Optimizing instruction substitution. Replace an instruction with
an equivalent instruction that optimizing compilers often emit [4].
While these instructions are often times not as intuitive as their
more straightforward counterparts, they are faster to execute. For
instance, mov rX, 0 is often times changed to xor rX, rX. An-
other instance is substituting arithmetic instructions, such as add,
with lea instructions. Applying this transformation more broadly
captures the range of programs that can be produced by different
compiler toolchains and options.
Code transposition. This transformation reorders a sequence of
instructions that changes the appearance of the code without alter-
ing the behavior [39].Marvolo implements code transformation
by dividing a basic block into smaller slices. Then these slices are
rearranged in a different order and are each appended with an un-
conditional jmp instruction to ensure that the original execution
order of the initial basic block is preserved.
Instruction swapping. As another form of code transposition, we
take 2 instructions and swap their positions. While this transfor-
mation does not significantly affect the readability of the code, it is
used by malware authors to evade anti-virus scanners. To ensure
that the transformation preserves semantics, analysis is performed
to check that the swap doesn’t violate any computational depen-
dencies. We check that each of the destination registers for the
instructions aren’t used as a source register for other instructions.
We also check that any source registers used by the two instructions
aren’t written to. Below we demonstrate an example; the left side
shows the original program and the right side shows the modified
program after the add and sub instructions had been swapped.

On the other hand, the program

mov eax, 0x1af3
add ecx, eax

is not amenable to swapping since the add instruction would not
use the updated value in eax after the mov instruction.
Opaque predicate insertion. Opaque predicates are predicates that
always evaluate to true or false and are known a priory the program-
mer. While opaque predicates evaluate to the same value under all
inputs, they are still evaluated during runtime. To represent the
instances where code and data are interleaved within a binary [36],
we generate a sequence of randomly-generated bytes following the
opaque predicate. An unconditional jmp instruction is inserted so
that these generated bytes are not executed and the next instruc-
tions within the program are run. Opaque predicates are commonly
inserted by code obfuscators. [20].
Function reordering. Functions are moved to different positions
throughout the binary. This transformation drastically changes the
appearance of the binary without adding new instructions or re-
moving existing ones.

B ANALYZINGMARVOLO
Importance of number of binaries mutated. Figures 6a and 6b show
Marvolo’s performance as the number of added mutated binaries
changes. As discussed, the benefits from Marvolo’s mutations
come early from the perspective that most accuracy wins can be
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Figure 7: MalConv2’s accuracy improvements when using a version ofMarvolo that only performs a single type of semantics-
preserving code transformation duringmutation. Results are for adding 1Kmutated samples in each case to the Ember dataset.

Original
add eax, ebx
sub ecx, 0x7c21
ret

Mutated
sub ecx, 0x7c21
add eax, ebx
ret

realized by using only a small fraction of the overall dataset as in-
put; we observe this trend over multiple datasets of different sizes.
More generally, however, Marvolo’s performance with regards to
input size is collectively governed by two factors – (1) the overall
dataset size, and (2) the number of input samples – that influence
the relationship between the utility of malware detection insights
from newly added (mutated) samples and the risk of overfitting. In-
tuitively, larger datasets require larger numbers of mutated samples
to reap benefits because they already exhibit a sufficient amount
of heterogeneity (as shown in Figure 1), and they are also far less
susceptible to overfitting (as the weight of each added sample is
relatively smaller).

B.1 Analyzing Marvolo
Importance of different transformations. To study the effect that
each of Marvolo’s ten code transformations have on accuracy im-
provements, for each transformation (in isolation), we generated
two sets of 1K mutated samples: one where all mutated samples
were benign, and one where all mutated samples were malicious.
Figure 7 shows the accuracy improvements for MalConv2 running
on the Ember dataset plus each of the 20 mutated datasets (one at a
time). For benign files, instruction swapping, obfuscating substitu-
tions, and function inlining yielded the largest accuracy wins, with
4%, 6%, and 4% performance gains, respectively. For malicious files,
register reassignment, code transposition, and opaque predicate
insertion were the most fruitful with 5%, 4%, and 5% performance
gains, respectively. The reason is that the latter trio of transforma-
tions are more invasive (i.e., they lead to larger code alterations
and resultant diffs), and are hence more often applied by malware
authors to circumvent recently employed detection patterns.

Further, our results in Section 3 highlight that malware authors
not only use many different kinds of code transformations, but also
diverse combinations of them. Thus,Marvolo currently opts for
a general randomized selection of transformations and combina-
tions during mutation. However, to make the most use of (limited)
compute resources, a practitioner could identify which code trans-
formations are present in the samples that they already have, and
focus the augmentation process on under-represented ones.

Using Marvolo. IndeedMarvolo is intended to complement exist-
ing ML-driven malware detectors and we do not propose changing
hyperparameters but we recommend keeping the hyperparameter-
tuning methodology the same after data augmentation. Beyond
these hyperparameters, we note two additional considerations:

(1) Input seclection. Marvolo performs best when presented
with inputs comprising a diverse set of binaries that differ (as
the dataset allows) in family and composition, e.g., binaries
with large fractions of differing code portions. Doing so aids
malware detectors in identifying the underlying transforma-
tions (injected by Marvolo) across wider-ranging contexts.
Further, as noted above, Marvolo must balance generating
sufficient mutated samples to boost heterogeneity in train-
ing datasets, while avoiding overfitting to those samples.
Our current implementation leverages that accuracy boosts
come early (i.e., with few samples) and overfitting occurs
soon after, motivating an iterative process starting with only
a small number of samples.

(2) Transformation selection. Our results in Section 3 highlight
that malware authors not only use many different kinds of
code transformations, but also diverse combinations of them.
Thus,Marvolo opts for a general randomized selection of
transformations and combinations during mutation. How-
ever, to make the most use of (limited) compute resources, a
practitioner could identify which code transformations are
present in the samples that they already have, and focus the
augmentation process on under-represented ones.
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